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Abstract This article reports on the calulation of 12 low

lying states of the nitrogen molecule along its dissociation

using the multi-reference exponential wavefunction ansatz

(Hanrath in J Chem Phys 123:84102, 2005), the single-

reference formalism multi-reference coupled cluster

(Oliphant and Adamowicz in J Chem Phys 94:1229, 1991),

and MRCI methods. Spin projection errors and state

overlap errors are calculated and allow an analysis of the

wavefunction with respect to properties different from

correlation energies. Both criteria are very sensitive to

errors in the wavefunction. Due to its lack of Fermi vac-

uum invariance the errors are more significant for the

single-reference formalism based approach.

Keyword Coupled-cluster � Multi-reference �
State selective � Electronic structure � MRCC

1 Introduction

The triple bond breaking of the N2 molecule is one of the

most difficult problems of quantum chemistry. Due to the

difficulties in the generalization of single-reference cou-

pled cluster (SRCC) methods [1, 2] to the multi-reference

case (MRCC), calculations on N2 involving the bond

breaking were dominated by MRCI and CASPT2 [3–5]

methods in the past. N2 is of particular interest as a proper

description has to meet several criteria which would be best

fulfilled with some kind of MRCC method. N2 offers a

geometry depending and partially significant amount of

static (near degeneracy) and dynamic (electron cusp) cor-

relation at the same time and offers several qualitative

symmetry related properties that should be met rigorously

by approximative calculations.

The MRCC history starts back in 1975 with the work of

Mukherjee et al. [6] and later [7] on valence universal or

Fock space coupled cluster (FSMRCC) theory. Lindgren

[8] as well as Lindgren and Mukherjee [9] and Mukherjee

and Pal [10] continued to work on FSMRCC. Another

branch of the MRCC history is started by the introduction

of the Hilbert space or state universal (SUMRCC) approach

of Jeziorski and Monkhorst in 1981 [11]. Both, FSMRCC

and SUMRCC, branches employ the Bloch equation and

suffer (in their original formulation) from various limita-

tions. For a more elaborate discussion of these branches we

refer to [12–15].

Besides the state and valence universal methods the

development started on state specific approaches. These

may be divided into single reference formalism based and

real multi-reference approaches. Naturally, the single ref-

erence formalism based multi-reference coupled cluster

(SRMRCC) approach of Oliphant and Adamowicz [16]

belongs to the former category. Li and Paldus introduced

reduced MRCC [17] and partially linearized reduced

MRCC approaches [18, 19] which are also formally based

on a single reference ansatz. Although there are many

advantages of these approaches they share the problem of

symmetry breaking as they treat one reference particular.

Apart from the single reference formalism based

approaches there are a few state specific variants of the

SUMRCC approach: 1. The ansatz by Mahapatra et al.

[20, 21] (MkMRCC), 2. Brillouin–Wigner based ansätze

[22–25] (BWMRCC) from the groups of Hubac and

Pittner, and 3. the multi-reference exponential (MRexpT)

[26, 27] ansatz by one of the present authors. The
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performance of those approaches has been analyzed in

various publications [14, 15, 28, 29].

The goal of this paper is to study state overlap and spin

projection errors for the SRMRCC and MRexpT wave-

function approaches in comparison to spin orbital oriented

MRCI (SOMRCI). These properties are more sensitive to

the quality of the wavefunction than the usually reported

correlation energies.

This paper is organized as follows: in Sect. 2 we reca-

pitulate the concepts of CI, MRCI, SRMRCC, and

MRexpT with a certain focus on the difficulties related to

MRCC. Section 3 reports the results of the calculations

with Sects. 3.2 and 3.3 going into state overlap and spin

projection errors, respectively.

2 Methods

In order to illustrate and describe the concepts of the

MRCC approaches we briefly look into the ideas of CI and

MRCI. The notation introduced during the discussion of

the CI methods will allow us to formulate the MRCC

approaches concisely.

2.1 CI

The CI wavefunction reads

jWCIi ¼ cl0
jl0i þ

X

a2Q
cajai ð1Þ

with |l0i the Hartree-Fock determinant and Q a set of

suitably chosen determinants. Individual CI (e.g. CIS,

CISD, CISDT, etc.) variants just differ in the choice of a

particular Q: Starting from a dominant Hartree–Fock

determinant l0 we may classify a certain determinant by

its substitution level with respect to l0. Considering the

Hamilton matrix elements, the importance of a determinant

a is (partially) ruled by the difference of the diagonal

elements hl0jĤjl0i � hajĤjai: Since this difference

typically grows with the substitution level one usually

succeedingly includes all singles, doubles, or higher level

substitutions in that order to improve the accuracy.

Defining

QxðlÞ ¼
[

ŝ2TxðlÞ
ŝjli ð2Þ

with TxðlÞ all x-fold substitutions with respect to l0 we

may simply write QCIS ¼ QSðl0Þ; QCISD ¼ QSDðl0Þ; etc.

2.2 MRCI

In case of degeneracy the Hartree–Fock determinant is no

longer a good approximation of a desired state and we have

to include additional determinants in a so called ‘‘reference

space’’ P ¼ fl1; l2; . . .g: The MRCI wavefunction reads

jWMRCIi ¼
X

l2P
cljli þ

X

a2Q
cajai: ð3Þ

It remains to define Q: As the above arguments regarding

the importance of the substitution levels hold in the multi-

reference case as well we should choose Q accordingly.

Obviously, in order to conserve the symmetry of the

wavefunction with respect to its references we have to

apply the same substitution level to each individual refer-

ence determinant.

This is illustrated in Fig. 1 for a singles substitution

manifold. The square shaped vertices on the left hand side

and the dots on the right hand side of the graph depict the

references and the substituted determinants, respectively,

while the arcs picture the substitution process. Considering

the illustration given in Fig. 1 we see the determinant |iai
to be generated from the substitution p ? a applied to |ipi
and from the substitution q ? a applied to |iqi. In order to

avoid |iai occurring in the wavefunction twice (causing

linear dependencies) we have to treat the collection of all

substituted determinants as a set with every element

occurring only once. Consequently, it is QMRCIS ¼S
l2P QSðlÞ n P; QMRCISD ¼

S
l2P QSDðlÞ n P; etc., where

we excluded P from Q... to guarantee P \Q... ¼ ;:
We should note that the discrimination of the P and Q

space in the (MR)CI wavefunction Eq. 3 is artificial.

Equivalently one may write

jWMRCIi ¼
X

q2AMRCI

cqjqi ð4Þ

with

AMRCI ¼ P [
[

l2P
QxðlÞ:

The equivalence between P and Q space with respect to

their role in the wavefunction is no longer true for coupled

cluster methods.

MRCI is a very general and accurate method with a

single but very serious issue: MRCI is neither size

Fig. 1 Illustration of the MRCI wavefunction: linear ansatz) every

generated linearly independent determinant carries its own coefficient
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consistent [30] nor size extensive [31]. This deficiency

severely affects the accuracy when going to a larger

number of particles.

2.3 SRMRCC

In 1991 Oliphant and Adamowicz [16] introduced an an-

satz they called ‘‘multi-reference coupled-cluster method

using a single-reference formalism’’ (SRMRCC). Using the

notation of the previous subsections this approach may be

written in a very concise form:

jWSRMRCCi ¼ eT̂ jl0i ð5Þ

with |l0i the Fermi vacuum and T̂ chosen to span the

MRCI space according to

T̂ ¼
X

ŝ2DðAnl0;l0Þ
tŝŝ ð6Þ

with A ¼ AMRCI and D(a,l) returning the substitution

from l to a. Of course one may choose A different from

AMRCI in Eq. 6. However, according to the success of the

MRCI method the original intention of [16] was to choose

it as A ¼ AMRCI: Actually, for the latter choice SRMRCC

is equivalent to an MRCI wavefunction (provided cl0
6¼ 0)

upon linearization of the Taylor series of the exponential in

Eq. 5 (eT̂ � 1þ T̂).

Figure 2 shows an illustration of the assembly of the

SRMRCC wavefunction at singles substitution level

including only the ŝp!qŝi!a product substitution. The left

hand side of Fig. 2 shows an MRCI wavefunction similar to

Fig. 1. Now we choose arbitrarily reference |ipi to act as

Fermi vacuum. Considering the determinants generated

from |ipi we find |api and |iai. Obviously |iqi and |aqi are

missing and in order to assemble the original MRCI wave-

function one has to add them as (higher) excitations relative

to |ipi. This is depicted in Fig. 2 by the movement of the

grayed area from the left to the right. On the right hand side

of Fig. 2 the additional substitutions are drawn as bold

arrows. (Actually, in this simple example the other reference

|iqi would be covered by a singles substitution manifold

already. But attention: This is not to be generalized.)

Analyzing the coefficients of the determinants on the

right hand side of Fig. 2 we find the coefficient of |api to be

ti?a while the coefficient of (the completely equivalent)

|aqi is tp?qti?a ? tip?aq since |aqi may be additionally

reached by a product excitation ŝi!a (the dotted arrow)

from |iqi. As tp?q and ti?a already appear in the graph they

are not independent and cause the symmetry of the

SRMRCC wavefunction to break.

Due to the previous discussion we may interpret

SRMRCC as a plain single reference coupled cluster ansatz

(e.g. CCSD) with additional specific higher excitations

added. Alternatively it may be viewed as a single reference

CCSDT... with certain excitations missing.

Without changing the original intention of [16] the

SRMRCC ansatz was later generalized to more than two

references [32] while keeping still only two electrons

active. Later variants of the SRMRCC ansatz [33–36] do

not solve the fundamental problem of symmetry breaking.

Although usually of reasonable accuracy in terms of the

correlation energy when using the dominant determinant as

Fermi vacuum, SRMRCC has been shown to have diffi-

culties in case of avoided crossings [28, 37], potential

energy surfaces, and low-spin/high-spin degeneracies [26,

37]. Due to the similar wavefunction ansatz within

RMRCC [17] and pl-RMRCC [18, 19] there are analogous

symmetry issues with those approaches.

2.4 Conceptual difficulties upon generalizing SRCC

or transferring MRCI to MRCC

One of the crucial points of the coupled cluster wavefunction

is to contain products of (substitution, amplitude) pairs. This

plays an important role for the wavefunction to be size

Fig. 2 Illustration of the SRMRCC wavefunction (including only the

ŝp!qŝi!a product substitution for convenience) and its symmetry

breaking, left original MRCI wavefunction, right inclusion of second

reference determinant |iqi and substitutions from it as (higher)

excitations from a particular reference |ipi within the SRMRCC

approach
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consistent and the cluster operator to be irreducible

(connected) insuring size extensivity. In order to understand

the difficulties of MRCC we shall try to reformulate CI and

MRCI in terms of excitation operators. We shall see that the

difficulties arise already at linear level and are not specific to

the product terms generated by the exponential. The crucial

problem is that an MRCI space cannot be spanned unam-

biguously by substitution operators as illustrated by Fig. 1.

Upon inspection of the CI and MRCI wavefunctions

(Eqs. 1, 3) we find no explicit reference to excitations.

However, we now rewrite the CI and MRCI wavefunctions

in terms of excitations. Equation 1 written in terms of

excitations reads

jWCIi ¼ cl0
jl0i þ

X

ŝ2T
tŝŝjl0i: ð7Þ

Eq. 7 is completely equivalent to Eq. 1.

However, considering the multi-reference case there is

no unique reformulation of Eq. 3 based on an excitation

based picture. The problems arise due to the ambiguity of

the excitation paths (e.g. ŝp!ajipi ¼ ŝq!ajiqi). In case of

MRCI this problem was solved by the application of a set

unification according to QMRCI ¼
S

l QðlÞ: Since the uni-

fication is applied to determinants it insures the linear

independence of the MRCI function space. Obviously, in

order for the set unification scheme to work it has to be

applied globally to all determinants generated by substi-

tutions from all references. However, this is a contradiction

to the fact that the excitation manifolds are reference

specific (that is: non-global). This prohibits the existence of

a substitution based analogon to the MRCI scheme.

The MRexpT ansatz [26] was inspired by the following

simple observation: If we cannot prohibit the existence of

ambiguous substitution paths we have to address the

problem of linear independence by the amplitudes. It has

been shown [26] that a determinant based amplitude index

insures linear independence.

We note that due to the single reference nature of the

SRMRCC approach there is no ambiguity issue with it.

2.5 MRexpT

Similarly to SRMRCC the initial concept of MRexpT is

very simple. The MRexpT ansatz [26, 27] is a state

selective modification of the SUMRCC of Jeziorski and

Monkhorst [11]. The MRexpT wavefunction is given by

jWi ¼
X

l

eT̂lcljli ð8Þ

with

T̂l ¼ /ðclÞ
X

ŝl;i2Tl

tŝl;ijliŝl;i: ð9Þ

with Tl the set of substitutions to be applied (e.g. singles

and doubles) with respect to each reference |li while

excluding excitations from one reference to another and

/ðzÞ ¼ e�i arg z; z 2 C:

The major difference between the SUMRCC and the

MRexpT ansatz is the way the amplitudes are indexed. The

original SUMRCC ansatz used an excitation based index-

ing (tŝl;i;jli) introducing many more variables into the

wavefunction than may be fixed by projections (when

considering a single state). Due to the determinant based

indexing of the amplitudes (tŝl;ijli) this problem is avoided

in MRexpT as illustrated in Fig. 3. The amplitudes are

fixed (at linear level) by the target determinant they are

pointing to. The wavefunction genealogy for MRexpT

including product excitations is shown elsewhere [38].

However, there is a price one has to pay: As shown in

[38] the coupling of the amplitudes leading to the same

substituted determinants destroys core-valence connectiv-

ity. However, the core (=inactive) part remains connected.

Additionally, MRexpT has been shown to be size consis-

tent [26]. Finally, we note that upon linearization of the

Taylor series of the exponential with suitably chosen Tls

also MRexpT is equivalent to MRCI.

Summarizing, each of the two discussed MRCC approa-

ches has its own issues: SRMRCC is inherently symmetry

broken while MRexpT lacks core-valence connectivity.

However, we would like to point out that we are not aware of

any MRCC approach up to now having no issues.

3 Results and discussion

In this section we present results for state overlaps and spin

projection errors.

3.1 Calculation details

In accordance with [39], which reports on the correlation

energies of N2 for MRCI and MRCC methods, we used a

Fig. 3 Illustration of the MRexpT wavefunction: amplitudes leading

to the same determinant share the same value
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6-31G [40] [10s4p]/(3s2p) basis set and 7Ru
? orbitals in the

calculations along the whole potential surface. The inte-

gral, SCF, and full CI calculations were carried out using

MOLCAS [41] with a special interface [42]. The MO

transformation left the 1rg, 2rg and 1ru, 2ru orbitals frozen

leaving 6 electrons to be correlated. We considered the

following states: X1Rþg ; 1
3Rþu ; 1

5Rþg ; 1
7Rþu ; 1

3Pg; 1
5Pu;

13Du; 1
3R�u ; 1

1R�u ; 1
1Pg; 1

1Cu; 2
1R�u ; and 11Du. Their

mapping onto the abelian subgroup D2h of D2? is given in

Table 1. Please note that the 11Du and 11Cu states show an

avoided crossing at about R = 4.44 Bohr. As we consid-

ered only a fixed number of states at a given multiplicity

the state crossing appears in Table 2 and Figs. 7, 8, 9 and

10 (the crossing states are not connected by lines).

All MRCC calculations were carried out with Sz = 0

wavefunctions using a CAS (6e-, 3rg 1pux 1puy 3ru 1pgx

1pgy) reference space. References having too few open

shells for a desired target state or having almost vanishing

coefficients got removed. In order to correctly select a

particular state we propagated the converged MRCI

wavefunctions to the MRCC amplitudes as an initial guess.

We refer to [39] for further technical details.

3.2 State overlap

Exact eigenfunctions for non-degenerate eigenvalues of the

Hamiltonian are orthogonal to each other. If the eigen-

values are degenerate but the eigenvectors corresponding

to a specific state may be qualified with respect to addi-

tional eigenvalues of operators which commute with the

Hamiltonian (good quantum numbers) the eigenvectors are

still orthogonal. The non-denegerate case holds for the non-

dissociative limit of N2 while the degenerate one applies to

the N?N atomic limit. Therefore, all states should be

orthogonal to one another at all geometries with the

exception of the h21Ru
- |11Ru

-i state overlap at the regime

of degeneracy. The P, D, and C-state degeneracy does not

affect orthogonality since the components of these states

appear in different irreps of D2h (cf. Table 1).

By construction CI methods guarantee the orthogonality

of non-degenerate states naturally. Using configuration

state functions (CSFs, classified by good quantum num-

bers) the CI vectors stay orthogonal also in case of

degeneracy. Consequently, orthogonality of states is of no

concern with CI wavefunctions and we do not consider it in

the following analysis.

For coupled cluster methods, however, the situation is

different. Instead of an eigenvalue problem as for CI the

solution of the coupled cluster equations involves a non-

linear equation system and there is no simple rationale

from linear algebra for the states to be orthogonal. The only

reason for the states to be orthogonal is due to the fact that

they should be approximations to eigenfunctions of the

Hamiltonian. Therefore, one may interpret the state overlap

as a simple measure of the quality of the wavefunction. A

lack of sufficient orthogonality is expected to affect prop-

erty calculations involving excited states significantly.

We calculated the state overlaps of MRexpT and

SRMRCC according to

Sij ¼
hWijWjiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hWijWiihWjjWji
p ð10Þ

by expanding the exponential up to its natural algebraic

truncation.

Table 2 shows the results for all states at two selected

geometries R = 3 Bohr (non-degenerate case) and R = 10

Bohr (degenerate case) while Figs. 4 and 5 show the results

for all geometries and states. We considered only those

state overlaps which are not trivially zero due to their

appearance in different irreps of D2h according to Table 1.

Table 1 Mapping of D?h states to D2h

X1Rg
?, 15Rg

? ? Ag

15Pu ? B2u (B3u)

13Ru
?, 17Ru

?, 13Du, 11Du, 11Cu ? B1u

11Pg, 13Pg ? B2g (B3g)

11Ru
-, 21Ru

-, 13Ru
-, 13Du, 11Du, 11Cu ? Au

Table 2 State overlaps for selected geometries

States MRexpT SRMRCC

R = 3 a.u. R = 10 a.u. R = 3 a.u. R = 10 a.u.

h15Rg
? | X1Rg

?i 1.3 9 10-7 7.9 9 10-6 5.1 9 10-9 4.6 9 10-1

h13Ru
? | 11Nu

a i 1.2 9 10-16 2.2 9 10-18 1.3 9 10-4 1.2 9 10-5

h13Du | 11Nu
ai 5.4 9 10-17 1.6 9 10-16 1.8 9 10-4 7.2 9 10-5

h13Du | 13Ru
?i 3.2 9 10-17 2.2 9 10-14 4.9 9 10-5 1.5 9 10-5

h17Ru
? | 11Nu

ai 8.4 9 10-20 5.2 9 10-18 1.9 9 10-6 1.2 9 10-5

h17Ru
? | 13Ru

?i 2.6 9 10-6 6.9 9 10-6 8.5 9 10-5 3.2 9 10-1

h17Ru
? | 13Dui 8.9 9 10-18 4.4 9 10-14 6.5 9 10-6 5.8 9 10-5

h13Pg | 11Pgi 1.7 9 10-16 1.3 9 10-16 2.3 9 10-4 5.4 9 10-5

h11Nu
a | 11Ru

-i 1.9 9 10-16 9.4 9 10-15 4.7 9 10-5 6.4 9 10-1

h21Ru
- | 11Ru

-i 1.3 9 10-5 2.3 9 10-3 5.6 9 10-5 2.5 9 10-1

h21Ru
- | 11Nu

a i 2.3 9 10-17 1.6 9 10-7 1.0 9 10-4 2.9 9 10-1

h13Du | 11Ru
-i 3.8 9 10-18 1.7 9 10-17 9.6 9 10-5 3.7 9 10-6

h13Du | 11Nu
ai 1.1 9 10-16 3.8 9 10-16 3.9 9 10-5 4.0 9 10-5

h13Du | 21Ru
-i 6.1 9 10-18 1.2 9 10-16 4.6 9 10-5 6.2 9 10-5

h13Ru
- | 11Ru

-i 5.0 9 10-17 3.9 9 10-17 3.3 9 10-4 1.2 9 10-5

h13Ru
- | 11Nu

ai 5.6 9 10-17 1.8 9 10-17 7.7 9 10-5 7.9 9 10-6

h13Ru
- | 21Ru

-i 2.5 9 10-18 9.0 9 10-16 5.0 9 10-5 1.1 9 10-5

h13Ru
- | 13Dui 1.0 9 10-16 9.9 9 10-18 7.0 9 10-5 3.1 9 10-5

aN ¼ D for R ¼ 3 Bohr

C for R ¼ 10 Bohr

�
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According to Table 2 and Fig. 4 the state overlaps for

MRexpT may be divided into two classes: 1. overlaps

which are not quite zero (*10-3 to 10-7, states:

h15Rþg jX1Rþg i; h17Rþu j13Rþu i; h21R�u j11R�u i) and 2. overlaps

which are actually zero (\10-14, remaining states). The

table reveals the h21Ru
- |11Ru

-i overlap to be the worst with

the value of 1.3 9 10-5 and 2.3 9 10-3 at the R = 3 and

10 Bohr geometries respectively. Since both states are of

the same D?h irrep they may intermix freely at the dis-

sociative limit and a non-vanishing overlap is reasonable.

However, in the non-degenerate case they should not

overlap but they still do to a certain extent. The h15Rg
?|

X1Rg
?i and h17Ru

? | 13Ru
?i are also not fully satisfactory but

their overlap is somewhat smaller. Due to their different

spin multiplicity the overlap does not increase as much as

for the h21Ru
- |11Ru

-i states when approaching the degen-

erate case. Additionally, upon dissociation we see the

h21Ru
- |11Cui states starting to overlap since they are both

members of the Au irrep of D2h and we did not enforce the

Kz projection.

The state overlaps for SRMRCC may be divided simi-

larly into two classes: (1) overlaps which are not quite zero

(*10-4 to 10-6) and (2) overlaps which are very large.

The latter show up at the dissociative limit. One should

note that this problem cannot be simply addressed by the

introduction of some kind of spin adaption within

SRMRCC since many of the very large overlaps appear at

same multiplicities [e.g. h11Cu | 11Ru
-i, h21Ru

- |11Cui] and

spin adaption would not help. Since all states are actually

converged to a residual norm less than 10-10 the SRMRCC

wavefunction ansatz shows obviously severe difficulties to

deliver proper orthogonal wavefunctions in the dissociative

limit. The situation improves when going to the vicinity of

the equilibrium geometry but is still not fully satisfactory.

Especially in comparison to the MRexpT wavefunction

SRMRCC seems to perform not reasonable in terms of

state overlaps.

3.3 Spin symmetry

3.3.1 General considerations

In this subsection we shall briefly resume the implications

of the spin on coupled cluster type wave functions. In the

non-relativistic case it is

½Ĥ; Ŝ2� ¼ 0 ð11Þ

requiring the wavefunction to be an Ŝ2 eigenfunction.

There are two common ways to set up the substitution

operators within the coupled cluster approach: Spin aver-

aged (Êp1...!q1...; pi; qi spatial orbitals, e.g. Êp!q ¼
âypâq þ ây�pâ�q and the bars denoting b spin, see for example

[43–46]) and spin specific operators (ŝp1...;q1...; pi; qi spin

orbitals, e.g. ŝp!q ¼ âypâq; see for example [8, 37, 47, 48]).

Since the spin specific operators may change the total spin

(while for coupled cluster purposes they are usually chosen

to conserve the Sz projection of the spin (½Ŝz; ŝ� ¼ 0)) they

do not commute with Ŝ2 while the spin averaged operators

do:

½Ŝ2; Ê� ¼ 0 ð12Þ

½Ŝ2; ŝ� 6¼ 0: ð13Þ

Naturally one might be in favor of using spin averaged

operators in coupled cluster type expansions but unfortu-

nately the Ê operators with non-overlapping creator and

annihilator orbital sets do not span the spin space when

applied to open shell reference states. This may be healed

by overlapping creator and annihilator sets but only at the

price of a non-commuting algebra. The latter problem may

Fig. 5 State overlap error for SRMRCC

Fig. 4 State overlap error for MRexpT
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be cured by the use of normal ordering. We avoided this

kind of complication using a spin specific (spin orbital)

substitution operator. Therefore, we have to check for the

spin projection of the resulting wavefunction due to Eq. 13.

Since the coupled cluster methods with an untruncated

cluster operator are equivalent to full CI they finally do

span the spin space and are spin adapted. However, using a

truncated cluster operator (e.g. singles and doubles) the

latter properties will be met only approximately.

In order to analyze the spin projections of the coupled

cluster approaches we consider their wavefunctions

expanded in terms of determinants |ii

jWdeti ¼
X

i

cijii: ð14Þ

For the following we impose hWdet|Wdeti = 1 and introduce

a projector onto a CSF basis according to

P̂S;Sz

CSF ¼
X

i0
ji0ihi0j ð15Þ

with |i0i a CSF according to

ji0i ¼ ngi0
Âjgi0 ijS; Sz; mi0 i ð16Þ

with g a configuration (spatial orbital occupation pattern),

Â the antisymmetrizer, ng a normalization constant, |S, Sz,

mi a spin eigenfunction with total spin S, z projection Sz and

degeneracy index m. ng and the valid values for m depend on

the number of open shells and the total spin S [49, 50].

As described previously all calculations were carried out

with Sz = 0 wavefunctions. Applying P̂S;Sz

CSF to Eq. 14 with

the desired S and Sz = 0 we get jWS;Sz

det i ¼ P̂S;Sz

CSFjWdeti: If

|WDeti was a spin eigenfunction we got hWS;Sz

det jW
S;Sz

det i ¼ 1:

Therefore, the deviation of

e :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hWS;Sz

det jW
S;Sz

det i
q

ð17Þ

from zero is a measure for the wavefunction |WDeti to

contain total spin components different from the desired S.

One should note that this test is stronger than the evaluation

of the Ŝ2 expectation value. That is e = 0 , ‘‘|WDeti is a

spin eigenfunction’’ while hWDetjŜ2WDeti ¼ SðSþ 1Þ does

not imply |WDeti to be an eigenfunction of Ŝ2 [51, 52].

Since both MRexpT and SRMRCC become exact for the

untruncated cluster operator their spin projection errors at

the truncated level (e.g. SD) may be considered as a

measure for the quality of the wavefunction.

3.3.2 Results

In the following we report on the spin projection errors e
for SOMRCI, MRexpT and SRMRCC at reference and full

wavefunction level. Projecting the SOMRCI and MRexpT

wavefunctions onto the reference space the spin projection

errors vanish since the reference space is made by a CAS

and is spin complete. In contrast to that the SRMRCC

approach is possibly spin contaminated at the reference

level already. Therefore we decided to investigate the

following spin projection errors in detail:

(i) SOMRCI (Fig. 7)

(ii) MRexpT (Fig. 8)

(iii) SRMRCC

(a) at reference level (Fig. 9)

(b) at full exponential level (Fig. 10).

The figures show the spin projection errors e in a loga-

rithmic plot. Figure 6 contains the state legend.

(i) Figure 7 shows the results for the spin projection

errors of SOMRCI. The smallest errors are zero, the largest

5.1 9 10-4 (at R = 2 Bohr, 5Pu). The spin orbital based

implementation of SOMRCI leaves the spin space incom-

plete resulting in minor spin projection errors. While this

error could be easily fixed in the case of CI by the use of a

CSF expansion of the substituted determinants there is no

simple fix for the coupled cluster methods when using the

spin specific substitution operators ŝ:

Fig. 6 N2: legend of state symbols

Fig. 7 Spin projection errors e of spin orbital based MRCI, R in a.u.
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(ii) The MRexpT spin projection errors are given in

Fig. 8. In contrast to SOMRCI the errors are larger by

roughly one order of magnitude. The smallest error is

6.6 9 10-5 (at R = 2.5 Bohr, 3Pg), the largest 3.1 9 10-3

(at R = 1.5 Bohr, 5Pu). Overall the errors behave rather

continuous with no outstanding characteristic. Due to con-

vergence difficulties with the MRexpT non-linear equation

system in case of degeneracies we introduced a CSF based

expansion of the reference space. We would like to point out

that for non-degenerate cases MRexpT naturally delivers

very small spin projection errors regardless of a CSF or

determinantal expansion of the reference space. The CSF

expansion within the reference space has been introduced

only due to convergence difficulties for MRexpT in the case

of degeneracy. All projections for R B 5.0 Bohr have been

checked to be virtually the same if performed with a deter-

minantal reference space expansion. However, due to

degeneracy effects at R = 10 Bohr we get partially poor spin

projection errors and partially severe convergence problems

of the non-linear equation system of MRexpT in case we

leave the reference space CSF expansion abandoned.

(iii. a) Figure 9 shows the results for the spin projection

errors of SRMRCC within the reference space. While the

X1Rg
? ground state shows no spin contamination all other

states show significant errors. The errors typically become

largest when approaching the dissociation limit of R = 10

Bohr. The smallest error is zero for the X1Rg
? ground state

while the largest error becomes 0.79 (at R = 10 Bohr, B1u

component of the 1Du state). Interestingly, for the latter

case the error gets larger than 50% meaning that the

dominant multiplicity of the calculated state is different

from the desired one. Analyzing the individual spin pro-

jection components yields for the singlet component

hW0;0
detjW

0;0
deti ¼ 0:369 and for the triplet component

hW1;0
detjW

1;0
deti ¼ 0:631 with higher multiplicities negligible.

This is a remarkable result as we start from a (singlet)

MRCI wavefunction which is propagated as an initial guess

to the SRMRCC wavefunction. Consequently, the at that

stage unconverged SRMRCC wavefunction is still nearly a

spin eigenfunction (apart from projections outside of the

MRCI space). However, upon the solution of the non-linear

equation system the wavefunction changes and prefers the

triplet state.

(iii. b) Finally Fig. 10 shows the results for the

SRMRCC approach within the full exponential space. First

of all we note the X1Rg
? state to be slightly more spin

contaminated than at the reference level. Secondly we

observe a significant similarity of the error within the full

Fig. 8 MRexpT spin projection errors within full exponential space

Fig. 9 SRMRCC spin projection errors within the reference space

Fig. 10 SRMRCC spin projection errors e within full exponential

space
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exponential space and the reference space. Actually, after

having analyzed the errors within the reference space

already these errors are expected to propagate to the full

exponential wavefunction as the reference space should be

the dominating part of the wavefunction. In other words:

The exponential wavefunction has no chance to recover

from the spin contamination within the reference space.

Actually, as can be seen from Fig. 10, it gets slightly

worse, except for the X1Rg
? state at R = 10 Bohr. Com-

paring the MRexpT spin projection errors with those of

SRMRCC we find the latter to be roughly one order of

magnitude worse in the non-dissociative region. At the

dissociative limit the spin projection errors of SRMRCC

become very large.

3.3.3 Spin projection by multiplicities

Besides the analysis of the spin projection errors e the CSF

projection technique allows us to check for the ‘‘unde-

sired’’ total spin components in the wavefunction

explicitly. The results of the application of P̂S;Sz

CSF to Eq. 14

with M = {1, 3, 5, 7}, M = (2S ? 1) is shown in Tables 3

and 4 exemplarily for the 1Ru
- and 3Ru

- states, respectively.

The tables show the weights c2 ¼ hWS;Sz

det jW
S;Sz

det i with

Sz = 0 and S determined by the multiplicities given in the

second row of the headings of Tables 3 and 4. Naturally,

the weights over all multiplicities sum up to one. Due to

rounding effects at the precision given in the tables this

may not always seem to be the case.

In Table 3 we see the singlet projection to be domi-

nating as it ought to be for a 1Ru
- state. However, the state

is not fully pure. Interestingly, MRexpT shows no triplet

and septet projection components in the wavefunction and

the erroneous quintet projection remains nearly constant

over all geometries. This is different for the SRMRCC

wavefunction. It contains components of all multiplicities

over the whole potential surface with the triplet component

dominating (after the singlet). The latter weight error

becomes 34% at R = 10 Bohr.

In Table 4 the triplet projection dominates as expected

for the 3Ru
- state. Similarly to the previous case the

MRexpT wavefunction contains only two spin projection

components with the erroneous septet projection being

small and virtually constant over all geometries. As before

the SRMRCC wavefunction contains components from all

spin projections with maximum weight errors of 0.5%

singlet at R = 1.5 Bohr and 0.2% quintet at R = 10 Bohr.

4 Conclusion

After the presentation of the concepts of MRCI, MRexpT,

and SRMRCC wavefunctions we discussed MRCC specific

difficulties. We reported state overlap and spin projection

errors of 12 low lying states of N2 with multi-reference

coupled cluster approaches.

MRexpT performs satisfactorily while SRMRCC shows

significant errors due to its lack of Fermi vacuum invari-

ance. The properties analyzed in this paper are more

sensitive to symmetry issues in the wavefunction than the

usually studied energetic properties. The state overlap

errors of SRMRCC seem to be a serious issue. It is

expected to affect property calculations of excited states

(e.g. transition moments) significantly. The impact on

indirect excited state calculations (e.g. linear response or

EOM like approaches) on top of an SRMRCC ground state

calculation is not obvious and should be investigated.

Table 3 MRexpT and SRMRCC spin projection by multiplicities for
1Ru

-, R in a.u. (due to space limitations figures a-b are to be inter-

preted as a 9 10-b)

R c2, MRexpT c2, SRMRCC

1a 3a 5a 7a 1a 3a 5a 7a

1.5 *1 0 5.3-7 0 *1 4.9-3 4.4-7 2.3-9

1.75 *1 0 9.0-7 0 *1 3.2-3 4.7-7 2.1-9

2 *1 0 1.1-6 0 *1 2.8-3 6.0-7 1.9-9

2.25 *1 0 1.1-6 0 *1 1.7-3 6.0-7 9.9-10

2.5 *1 0 6.9-7 0 *1 8.9-4 4.5-7 5.9-10

3 *1 0 4.3-7 0 *1 3.3-4 2.8-7 4.2-10

3.5 *1 0 4.9-7 0 *1 8.3-5 2.0-7 6.9-10

4 *1 0 5.5-7 0 *1 2.4-5 1.5-7 2.4-9

4.5 *1 0 4.8-7 0 *1 1.9-5 1.1-7 5.7-9

5 *1 0 3.7-7 0 *1 2.1-5 7.8-8 9.0-9

10 *1 0 4.6-7 0 6.6-1 3.4-1 6.2-7 1.1-8

a M = 2S ? 1, multiplicity projection hWS;Sz

det jW
S;Sz

det i

Table 4 MRexpT and SRMRCC spin projection by multiplicities for
3Ru

-, R in a.u.

R c2, MRexpT c2, SRMRCC

1a 3a 5a 7a 1a 3a 5a 7a

1.5 0 *1 0 3.9-8 5.5-3 9.9-1 1.3-5 3.8-8

1.75 0 *1 0 7.3-8 3.5-3 *1 1.2-5 6.4-8

2 0 *1 0 7.8-8 3.0-3 *1 9.8-6 8.3-8

2.25 0 *1 0 5.4-8 1.8-3 *1 6.9-6 7.3-8

2.5 0 *1 0 4.1-8 9.0-4 *1 4.8-6 5.9-8

3 0 *1 0 5.1-8 3.1-4 *1 3.3-6 5.0-8

3.5 0 *1 0 6.9-8 7.5-5 *1 2.6-6 5.1-8

4 0 *1 0 6.5-8 1.6-5 *1 1.8-3 5.4-8

4.5 0 *1 0 5.0-8 7.7-6 *1 2.3-6 5.9-8

5 0 *1 0 4.6-8 6.3-6 *1 2.8-6 8.4-8

10 0 *1 0 9.7-8 7.2-6 *1 2.2-3 1.5-7

a M = 2S ? 1, multiplicity projection hWS;Sz

det jW
S;Sz

det i
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Together with the previous study on correlation energy

errors of the N2 dissociation [39] we conclude that the

SRMRCC energy is usually (apart from its ambiguity and

possible discontinuity) rather accurate while the associated

wavefunction shows significant difficulties. For MRexpT

these issues are less severe.

Analogous calculations on N2, e.g. for SUMRCC,

MkMRCC, and BWMRCC would be very interesting.
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